

Sustainable small-scale biogas production from agrofood waste for energy self-sufficiency

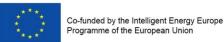
Live-Webinar, 12th November 2014

Noel Gavigan IrBEA Executive

Hosted by RENAC

Co-funded by the Intelligent Energy Europe Programme of the European Union IEE/13/477/SI2.675801

Legal disclaimer: The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.



About BIOGAS³

- Implemented within EU-programme Intelligent Energy Europe
- Aims to promote renewable energy supply
- Small scale agri-food biogas production
- Using agricultural waste and food processing waste
- Producing energy for self-consumption

Contribution to secure, sustainable and competitively priced energy for Europe by promoting new and renewable energy sources and supporting energy diversification.

The team of **BIOGAS³**

Partner **Organisations:**

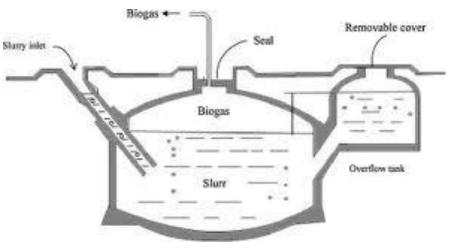
AINIA, FIAB (Spain) ACTIA, IFIP (France) TCA, DEIAFA (Italy) RENAC (Germany) FUNDEKO (Poland) JTI (Sweden) IrBEA (Ireland)

EVENT NAME. Place, xx/xx/xxxx


Co-funded by the Intelligent Energy Europe Programme of the European Union

Typical Industrial scale Biogas Plant

- 250kwe 5MWe scale
- Capital Expenditure of €4-5m / MW
- Feedstocks: Energy Crops
- Feedstocks: Waste Materials
- Feedstocks: 10,000 tonnes to 200kt
- Currently 2 in operation in Ireland
- 3 under construction
- Potential for "a few dozen"



Developing World Digesters

Co-funded by the Intelligent Energy Europe Programme of the European Union

Genesis of BIOGAS³

- Biogas plants to suit farms and food processors without effecting current operations
- Using cow slurry to provide gas onsite for milking operations (hot washing, milk cooling)
- Converting food processing waste (whey, off spec product etc..etc..) to biogas for process heating / cooling / electricity

Which materials can produce biogas?

• Agricultural waste & Products

- Animal slurries
- Harvest residues
- Grass / Maize / Cereals

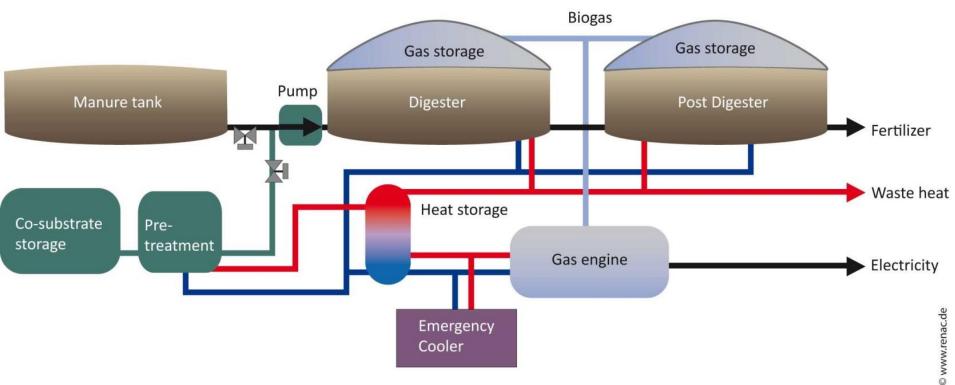
• Food processing waste

- Meat/fish processing waste
- Dairy waste

Co-funded by the Intelligent Energy Europe Programme of the European Union

- Brewery spent grains
- Vegetable waste
- Waste from prepared food factories
- Sludge from waste water treatment plants
- Waste Management / Sludge Management

www.biogas3.eu


Substrate	Dry matter	Biogas	Methane Content	Net Energy		ing value % efficient	Electricity 35% efficient		t ric value 9c/kwh
	[%]	m ³ /ton fresh weight	%	kWH / Tonne	@8	Bc/kwh	[kWh el./ton]	-	cluding heat value)
Cattle Manure	8	25	60	162	€	11.70	57	€	10.80
Pig manure	6	20	60	130	€	9.36	45	€	8.64
Milk whey	8	58	53	333	€	23.97	117	€	22.14
Brewers yeast (pressed, cooked)	25	152	62	1021	€	73.48	357	€	67.87
Potato pulp	19	108	50	585	€	42.11	205	€	38.89
Slaughterhouse waste (rumen)	15	60	55	357	€	25.73	125	€	23.77
Bread and baking residues	77	570	53	3272	€	235.57	1145	€	217.57
Corn silage	35	216	52	1216	€	87.58	426	€	80.89

Co-funded by the Intelligent Energy Europe Programme of the European Union

Biogas Technology

Co-funded by the Intelligent Energy Europe Programme of the European Union

Biogas Technology

How can Biogas technology support agro-food companies?

- Recycling organic residues \rightarrow time and cost savings
- Providing company with own produced electricity and heat
 - Covering energy demand of company and contributing to energy self-sufficiency of company
 - Improving company's energy efficiency
 - Independence of energy providers and market prices (e.g. feed-in tariffs)
 - Reduction of energy costs
 - Sustainability of processes

Example of a farm small-scale biogas plant

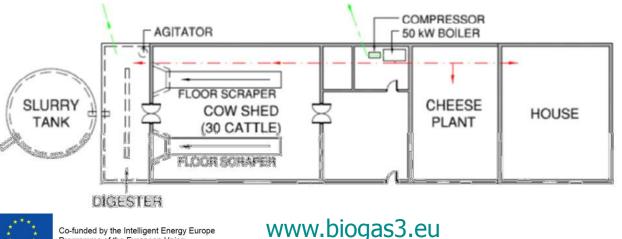
Dairy farm, Gießen (Germany)

Small-scale biogas plant (installed capacity 75 kW). Feedstocks: cattle slurry (10.950 m3/year) Energy use: heat for self-consumption, electrical energy is fed into local power grid. Digester: 600 m3 concrete tank Biogas valorisation unit: 75 kW boiler. Energy production : 630 Mwhel/a; 740 MWhth/a Investment: 500,000€

Estimated payback period = 6 years

Data obtained from a report of Bio4Gas GmbH

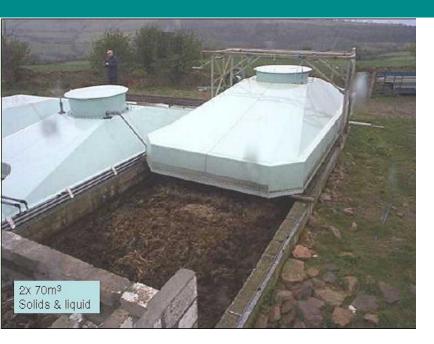
Co-funded by the Intelligent Energy Europe Programme of the European Union



Example of a farm small-scale biogas plant

Fahringer farm, Rettenschöss (Austria)

Small-scale biogas plant (self-built, low-cost). Feedstocks: cattle slurry, whey, pig slurry Energy use: heat for the housing and the cheese plant. Digester: 150m3 concrete tank Biogas valorisation unit: 50kW boiler. Gas production : 150-180m3 biogas/day Investment: 35,000€ Annual Maintenance cost (estimate 5% CapEx €1750) Gas value €6570/yr Payback 7 years


Data obtained from a report of the BIOREGIONS project (www.bioregions.eu) compiled by Patrick Daly

EVENT NAME. Place, xx/xx/xxxx

Programme of the European Union

Methanogen, Waterford

- Built 1992 running ever since
- 2 x 70m3 insulated concrete tanks, Fibreglass top
- €35,000 Initial investment
- 50kw Heat output

Example of a food waste small-scale biogas plant

University of Southampton Science Park (UK)

Data from SEAB energy (seabenergy.com)

Co-funded by the Intelligent Energy Europe Programme of the European Union Small-scale biogas plant, containerized, by SEab Energy Ltd (Model Muckbuster®) Feedstocks: 410 L/day of kitchen food waste, cooking oil and spent alcoholic drinks. Energy use: electricity and heat used in the business park offices and research labs. Biogas valorisation unit: 8kW CHP engine. Biogas production: 46m3/day Electricity production: 35MWh/year Investment: 120,000 €

Annual operation and maintenance costs: 6,000 € Energy savings: 3,380 € Heat savings: 1,810 € Waste management savings: 12,470 € Digestate value: 1,170 € Payback period: 4 years (with feed-in tariffs). Estim

In this case, the power of the biogas plant is under-used. The plant has the capacity to produce 64MWh/year and it is only producing 35MWh/year. At full load, the payback period without feed-in tariffs would be reduced to 7 years.

Payback period: 4 years (with feed-in tariffs). Estimated in 9 years without feed-in tariffs.

**** * * * ****

www.biogas3.eu

Digesters in Ireland

Digester	Location	Feedstock	Size (kw)	Energy Use
Roughty Valley Co-Op	Kerry	Pig Slurry	245	Heating
Campile Community	Kilkenny	Cattle Slurry +	200	Heating
Methanogen	Waterford	Cattle Slurry +	50	Heating + research
Ballyshannon	Wexford	Food waste, cattle slurry	300 heat 200 electric	Heating & Electricity
Green Gas	Limerick	Cattle Slurry, food processing waste	400 heat 250 electric	Heating & Electricity

2 Digesters currently undergoing commissioning

2 Digesters currently under construction

Recommended Reading

RASE Report on anaerobic digestion

Practice with Science Group

A Review of Anaerobic Digestion Plants on UK Farms

About BIOGAS³

Co-funded by the Intelligent Energy Europe Programme of the European Union www.biogas3.eu

What can BIOGAS³ do for me?

• Free training courses & workshops

- On-line and face-to-face
- Choice of basic courses, specialised workshops, webinars...
- Personalised feasibility studies
 - With the software smallBIOGAS, to check if your feedstock and site are suitable for a small-scale biogas plant.
- Networking and one-to-one activities
 - Contact to specialised biogas plant technologists and technology centres that will help you to outline the best project
- Implementation of new small-scale biogas plants

Co-funded by the Intelligent Energy Europe Programme of the European Union

www.biogas3.eu

BIOGAS³ publications

Report small-scale AD in agro-food companies: potentials and barriers

Co-funded by the Intelligent Energy Europe Programme of the European Union

Small-scale AD in agro-food companies: potential and barriers

BIOGAS³ Sustainable small-scale biogas production from agro-food waste for energy self-sufficiency

> Date: 30 May 2014 (first version) 30 August 2014 (updates)

Authors: Mar Mesas and Federico Morais (FIAB) With the collaboration of all the BIOGAS³ consortium

DATA OF THE PR	OVECT.
DATA OF THE PR	
Programme	Intelligent Energy Europe (IEE) - ALT
Key action	Promotion and dissemination projects
Grant Agreement	IEE/13/477/S12.675801
Start / end date	1 st March 2014 - 28 th February 2016

igent Energy Europe (IEE) - ALTENER otion and dissemination projects

E-mail

Website

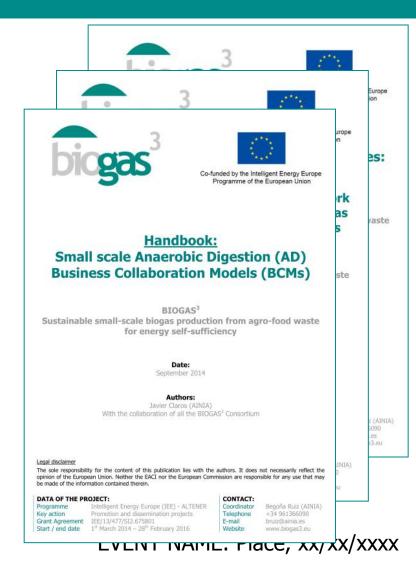
EVENT NAME. Place, xx/xx/xxxx

CONTACT: Begoña Ruiz (AINIA) Coordinator

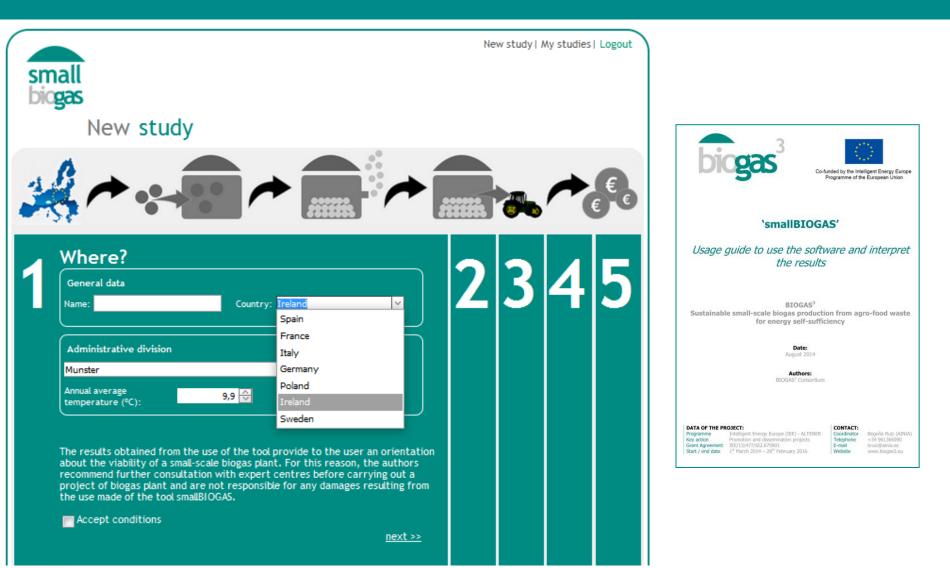
Telephone +34.961366090bruiz@ainia.es www.biogas3.eu

BIOGAS³ publications

- Report small-scale AD in agro-food companies: potentials and barriers
- EU legislative and financial framework for the implementation of small-scale biogas plants in agro-food & beverage companies



BIOGAS³ publications


- Report small-scale AD in agro-food companies: potentials and barriers
- EU legislative and financial framework for the implementation of small-scale biogas plants in agro-food & beverage companies
- Small-scale AD Business Collaboration Models

SmallBiogas Software Tool & Usage Guide

Biogas³ Handbook

Co-funded by the Intelligent Energy Europe Programme of the European Union www.biogas3.

Kraft-Wärme-Kopplungsgesetz (KWK-Gesetz Abs. 2; §4 Abs. 1, 4) EEG 2014 (§23) Bundes-Bodenschutzgesetz (BBodSchG) Bundesnaturschutzgesetz (BNatSchG) Düngegesetz (DüngeG)

I'm interested, how can I take part?

Contact your local partner!

Michael Hegarty michaelhegarty@irbea.ie 087-0556630

Noel Gavigan noelgavigan@irbea.ie 087-6845977

www.irbea.ie

Co-funded by the Intelligent Energy Europe Programme of the European Union

www.biogas3.eu

I'm interested, how can I take part?

• Contact your local partner!

Volker Jaensch jaensch@renac.de 030 – 526 8958-85

Katharina Hartmann hartmann@renac.de 030 – 526 8958-95

Co-funded by the Intelligent Energy Europe Programme of the European Union www.biogas3.eu

Programme of the European Union

Thank you for your attention

Co-funded by the Intelligent Energy Europe Programme of the European Union

What is biogas?

- It is a fuel gas (similar to natural gas) obtained from microbial degradation of organic matter in absence of oxygen.
- Feedstock Receiving/ Processing & Loading
- It can be used to produce heat, electricity or be used as vehicle fuel after purification.

www.biogas3.eu

EVENT NAME. Place, xx/xx/xxxx

Solids

Liquids Gas

Biogas Technology

What is Anaerobic Digestion?

The basics:

- Conversion of organic material into biogas in the absence of oxygen
- A complex microbiological process with widespread natural occurrence (e.g. cow stomach, swamplands, rice plantations, etc.)
- The climate effect of methane is 21 times higher than that of CO2 (biogas usually contains about 50 70 % methane)

